skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zare, Soroush"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motor impairments resulting from neurological disorders, such as strokes or spinal cord injuries, often impair hand and finger mobility, restricting a person’s ability to grasp and perform fine motor tasks. Brain plasticity refers to the inherent capability of the central nervous system to functionally and structurally reorganize itself in response to stimulation, which underpins rehabilitation from brain injuries or strokes. Linking voluntary cortical activity with corresponding motor execution has been identified as effective in promoting adaptive plasticity. This study introduces NeuroFlex, a motion-intent-controlled soft robotic glove for hand rehabilitation. NeuroFlex utilizes a transformer-based deep learning (DL) architecture to decode motion intent from motor imagery (MI) EEG data and translate it into control inputs for the assistive glove. The glove’s soft, lightweight, and flexible design enables users to perform rehabilitation exercises involving fist formation and grasping movements, aligning with natural hand functions for fine motor practices. The results show that the accuracy of decoding the intent of fingers making a fist from MI EEG can reach up to 85.3%, with an average AUC of 0.88. NeuroFlex demonstrates the feasibility of detecting and assisting the patient’s attempted movements using pure thinking through a non-intrusive brain–computer interface (BCI). This EEG-based soft glove aims to enhance the effectiveness and user experience of rehabilitation protocols, providing the possibility of extending therapeutic opportunities outside clinical settings. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract Wearable robotics, also called exoskeletons, have been engineered for human-centered assistance for decades. They provide assistive technologies for maintaining and improving patients’ natural capabilities towards self-independence and also enable new therapy solutions for rehabilitation towards pervasive health. Upper limb exoskeletons can significantly enhance human manipulation with environments, which is crucial to patients’ independence, self-esteem, and quality of life. For long-term use in both in-hospital and at-home settings, there are still needs for new technologies with high comfort, biocompatibility, and operability. The recent progress in soft robotics has initiated soft exoskeletons (also called exosuits), which are based on controllable and compliant materials and structures. Remarkable literature reviews have been performed for rigid exoskeletons ranging from robot design to different practical applications. Due to the emerging state, few have been focused on soft upper limb exoskeletons. This paper aims to provide a systematic review of the recent progress in wearable upper limb robotics including both rigid and soft exoskeletons with a focus on their designs and applications in various pervasive healthcare settings. The technical needs for wearable robots are carefully reviewed and the assistance and rehabilitation that can be enhanced by wearable robotics are particularly discussed. The knowledge from rigid wearable robots may provide practical experience and inspire new ideas for soft exoskeleton designs. We also discuss the challenges and opportunities of wearable assistive robotics for pervasive health. 
    more » « less